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Thisarticlereviewsthedevelopmentofmetamaterials(MM),startingfromNewton’sdiscoveryof

thewaveequation,andendswithadiscussionoftheneedforatechnicaltaxonomy(classification)

ofthesematerials,alongwithabetterdefineddefinitionofmetamaterials.Itisintendedtobea

technicaldefinitionofmetamaterials,basedonahistoricalperspective.TheevolutionofMMs

beganwiththediscoveryofthewaveequation,traceablebacktoNewton’scalculationofthespeed

ofsound.Thetheoryofsoundevolvedtoincludequasi-statics(Helmholtz)andthecircuitequations

ofKirchhoff’scircuitlaws,leadingtotheultimatedevelopmentofMaxwell’sequationsandthe

equationforthespeedoflight.Beitlight,orsound,thespeedofthewave-fronttraveldefinesthe

wavelength,andthusthequasi-static(QS)approximation.Butthereismuchmoreatstakethan

QSs.Taxonomyrequiresaproperstatementofthelawsofphysics,whichincludesatleastthesix

basicnetworkpostulates:(P1)causality(non-causal/acausal),(P2)linearity(non-linear),(P3)real

(complex)timeresponse,(P4)passive(active),(P5)time-invariant(timevarying),and(P6)recip-

rocal(non-reciprocal).ThesesixpostulatesareextendedtoincludeMMs.
VC2016AcousticalSocietyofAmerica.[http://dx.doi.org/10.1121/1.4950726]
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I.INTRODUCTION

Acousticmetamaterials(AMMs)arecompositemateri-

alswhosepropertiesarestronglydifferentfromtheircompo-

nentcharacteristics.UsuallytheengineeredAMMspossess

unusualbulkproperties,whichrequirecharacterization.The

purposeofthisreportistoprovideaprecisedefinitionof

AMMs,toimproveonthevernaculardefinition“materials

thatdonotappearinnature.”Whatisneededisatechnical

definition,basedonthemathematicalpropertiesofmetama-

terials.Towardthisgoalwedrawupon,andthenextend,the

sixpostulatesofcircuittheoryasdefinedbyCarlinand

Giordano(1964).Theseextendedninepostulatesincludethe

long-waveapproximation(i.e.,quasi-statics),guidedwaves

(transmissionlinehorntheory),Rayleighreciprocity,the

activevspassive(positive-real)impedanceproperty,and

ageneralizationofcausality.Basedonthesedefinitions,a

technicaltaxonomyofMMisproposed.

A.Somehistory

SergeiAlexanderSchelkunoff,aBellLabsmathemati-

calphysicistwhowrotethefirsttextbookonelectromagnetic

wavesin1943,seemstohavebeenthefirsttodevelopthe

conceptofametamaterial(MM).Thefirstpracticalacoustic

metamaterial(AMM)appearstohavebeenrealizedby

WinstonKockatBellLabsinthe1940sinhisworkinartifi-
cialacousticdielectrics.Schelkunoff’sEMapproachwas

significantlymoredetailedthanKock’s,becauseacoustic

wavepropagationisdescribedbyascalarequation,while

EMwavepropagationisdescribedbyMaxwell’svector

equations.However,itispossibletomixacousticandelec-

tricalmodes,creatingavector-basedAMMmedium(i.e.,

electro-magneticallyAMMs),whichisevenmorestructur-

allycomplex(MalinovskyandDonskoy,2012).Abrief

reviewofthemanyhistoricalbreakthroughsrelatedto

AMMsshouldhelpguidethereadertowardadeeperunder-

standingofthissubject.

SirIssacNewtonin1686setthefirststageforacoustics

bycalculatingthespeedofsound.Hisformulawasinerror

byffiffiffiffiffiffiffi 1:4
p

,duetohisignoranceofadiabaticcompressionof

air,buthisprincipleswereotherwisecorrect.Following

Newton’sdevelopmentofthewaveequation,hiscontempo-

raryJean-BaptisteleRondd’Alembert(1717–1783,see

Fig.1)firstdescribedthegeneralsolutionfor1-dimensional

wavesintermsofthesumofanytwoarbitraryfixedfunc-

tionstravelingforwardandbackwardinspace,atthespeed

ofsound.Thisformulationdemonstratedthewaveequa-

tion’slinearityproperty,andthecausalityofacousticsys-

tems.Thekeywasthefinitewavespeed,whichdefineda

wavelengthforapuretoneaskf¼c.Therelationship

betweenwavelengthandthespeedofsoundhadbeeneluci-

datedpreviouslybyGalileoGalileiandMarinMersenne

(1630),andevenearlierbytheancientGreeks.

InNewton’sdayitwascommontouseaTaylorseriesto

representfunctionalsolutionstoadifferentialequation.The

exponentialfunctione�t
hadyettobedefined.Complexnum-

bershadbeenformalizedbyRafelBombelli,butwerenotin

commonusage,evenbyNewton,whocalledthem

“impossiblenumbers”(Stillwell,2010,p.117).TheBernoulli

brothers,JacobandJohann,alongwithJohann’ssonDaniel,

dramaticallytransformedmathematicsbystudyingequations
a)
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defined by the Taylor series, such as the logarithmic function

and its inverse, the exponential function. However it was

Johann’s student Leonhard Euler (1707–1783) who first took

these studies to the next level, with results that went well

beyond the Bernoullis’ (Stillwell, 2010, p. 282). Carl

Friedrich Gauss and Augustin-Louis Cauchy, but most

importantly Georg Friedrich Bernhard Riemann (1851), next

developed “complex” calculus, following in the footsteps of

Newton and Euler’s “real” calculus. With the introduction of

the complex exponential function e�st, where s ¼ rþ jx is

the complex radian frequency, it was possible to deal with

linear differential equations in the frequency domain. These

concepts defined the frequency domain, allowing for the full

development of the quasi-static (QS) approximation of im-

pedance. In the words of Stillwell (p. 276),

This resolution of the paradox of
ffiffiffiffiffiffiffi
�1
p

was so powerful,

unexpected, and beautiful that only the word “miracle”

seems adequate to describe it.

This quote is a testament to the power of the Laplace

transform and the utility of complex-analytic functions of

complex frequency.

The QS approximation was cleverly utilized by

Hermann von Helmholtz (1821–1894), with his introduction

of the Helmholtz resonator, based on first degree polynomial

approximations of a Taylor series approximation of a trans-

mission line, following naturally from d’Alembert’s solution

to the wave equation and Euler’s complex exponential func-

tion. Soon after Helmholtz’s discoveries, Gustav Kirchhoff’s

(1824–1887) circuit laws (1845) were introduced, 17 years

before James Clerk Maxwell’s electromagnetism (EM) equa-

tions were first written down. In 1863, at the same time the

United States’ Civil war was being fought, Maxwell first

explained the speed of light with his demonstration of the

EM vector wave equation, following in the footsteps of

Newton’s acoustic wave equation.

It was the invention of the telephone by Bell in 1876

that lead to the next major developments. This success

began a technical revolution, driving massive innovation,

much of it in electronics, including transmission line theory

and the transistor. The first wave filter, used for telephonic

transmission, was invented by George Ashley Campbell

(1903) at the AT&T Development and Research (DR)

department (Fagen, 1975; Millman, 1984). The concept of

the positive real impedance function was defined by Otto

Brune (1931), which identified the mathematical principle

behind conservation of energy (Brune, 1931; Hunt, 1954;

Van Valkenburg, 1960, 1964).

The development of modern radar began in the 1930s, and

accelerated during World War II (1939–1945). Transmitting

EM waves using metal wave-guides by Rayleigh (1897) gave

the first hint of the expanded use of the QS approximation

(Ramo et al., 1965; Schelkunoff, 1943). Quarter-wave “stubs”

on wave-guides acted as filters, making it possible to manipu-

late the frequency content of signals within the wave-guide.

This development lead to electronics, at first in the form of

traveling wave amplifiers, wave circulators, and directional

couplers (Montgomery et al., 1948), soon followed by the de-

velopment of the transistor.

One important simplifying assumption in both acous-

tics and EM theory, is that of guided waves, where waves

propagate mainly in the “longitudinal” direction, and are in

cutoff in the transverse direction (i.e., perpendicular to the

direction of propagation). In this situation the QS model

applies in the transverse direction, but not in the longitudi-

nal propagating direction. This leads to transmission line

theory, critically important for the development of MMs.

When the QS approximation is also imposed in the

longitudinal direction, one has the case of the lumped ele-

ment transmission line approximation (Campbell, 1903),

widely used in engineering (Ramo et al., 1965, p. 44,

Appendix IV).

When the vector wave equation can be reduced to a sca-

lar transmission line (TL) equation, the complexity of a

problem may be greatly reduced. The most general form of

the TL equation is the Webster horn equation (Gupta et al.,
2012; Pierce, 1981; Webster, 1919), which is the common

assumption in guided acoustic transmission lines (horn

theory), the ideal tool for MMs. In EM theory the horn equa-

tion is equivalent to the telegrapher’s equations having a

spatially varying characteristic impedance and wave speed.

Given the driving point impedance looking into a horn, one

may reconstruct the area function by solving a certain inte-

gral equation (Sondhi and Gopinath, 1971; Youla, 1964).

These topics, while relevant to MMs, are well beyond the

scope of the present discussion.

This study introduces a taxonomy to describe non-

standard effects that are observed in AMMs. An AMM can

be redefined as an assembly of single-material transducers.

To characterize the transducer “bundle” (a unit element of

the AMM), we assume the wavelength is much larger than

the component transducers. Thus we can use the quasi-static

approximation to characterize the total AMM, using network

and transmission line theory. The taxonomy proposed is

based on well-known postulates. We believe this can lead to

a major step forward when analyzing and characterizing

FIG. 1. (Color online) Time line show-

ing some important mathematicians

who lived between the 16th and 20th

century.
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AMMs,byprovidingdeeperinsightsintotheirtransmission

properties.

II.THEDEFINITIONANDTAXONOMYOFMMS

Ineithercase,acousticorEM,thedefinitionofMMs

seemsfuzzy.MMsarefrequentlydefinedasthosenotfound

innature:

Metamaterialsarematerialsengineeredtohaveproper-

tiesthathavenotyetbeenfoundinnature.Asdefined

byWikipedia.

Thisdefinitionsimplywillnotdo,since“whatmaybe

foundinnature”dependsonwhatweknowtoday.Forexam-

ple,aresemiconductorsMMs?Isuspectmanywouldsay,

“no.”Yetnaturedoesnotprovideuswithsiliconcrystal

wafers,from6(cm)ingots.Moreimportantlythisdefinitionis

starklyvoidoftechnicalutility.Thuswewillexamineexam-

plesofMMstodevelopadefinitionandeventualtaxonomy.

DuringWorldWarII,submarineswouldsitatadepth

thatallowedthemtobeinvisibletosonarwavescausedbya

“refraction”oftheacousticwaves,producingaregionoftotal

isolationfromthesurfacesonar.Awhaleusesthesameeffect

(denotedasaSOFARchannel)tocommunicateovermany

thousandsofmiles.Again,itlookslikeanapparentmiracle;

yetitisprovidedbynature.Bothofthesearegreatexamples

ofanimportant(andalsopractical)cloakingeffectthatissim-

plyduetoatemperaturegradientthatthenchangesthespeed

ofsound,thuscreatingtheSOFARchannel.Norris(2008)

explainsthephysicsbehindacousticcloakingbyderivingthe

acousticcloakingtheoryusingthetransformationbetweenthe

physicalspacetothevirtualspace.Effortsrealizingandopti-

mizingcloaksonAMMswererecentlypublished(Cai,2012;

Gokhaleetal.,2012).

IntheEMcase,materialshavebeensynthesizedthat

haveanegativel(permeability)ande(permittivity)

(Orfanidis,2008,Sec.8.6).Intheacousticscasethiswould

implyanegativemass(HuangandSun,2012)andbulkmod-

ulus(stiffness).Suchpropertiescanonlyexistoveranarrow

frequencyrange,duetocausality.Everycausalcomplex

analyticfunction,suchasanimpedanceandthepropagation

function[i.e.,complexwavenumberjðsÞ¼bðsÞþjkðsÞ]
mustobeytheCauchy–Riemannconditions,whichcouple

therealandimaginarypartsofeveryanalyticfunction.This

isanimportantextensionoftheKramers–Kronig(i.e.,

HilbertTransform)relationsusedintheFourierdomain

(Brillouin,1960,Chap.III,p.43–83).

Aswiththefirstdefinition,theattempttocategorize

MMsseemstobeneithertechnicalnorobvious.Therefore

theobjectiveofthisstudyisamathematicalstatementof

MMproperties,discussedinSec.IIB.

A.Carlin’snetworkpostulates

SincetheQSapproximationisakeyprincipleinthe

designofMMs,QSnetworktheoryiswell-suitedtocharac-

terizeMMs.Thus,asastartingpoint,MMsareconveniently

catalogedintermsofthesixpostulatesofQSnetworktheory

(CarlinandGiordano,1964):anetworkmaybecharacterized

as(P1)causal(ornon-causal/acausal),(P2)linear(ornon-lin-

ear),(P3)havingareal(orcomplex)timeresponse,(P4)pas-
sive(oractive),(P5)time-invariant(ortimevarying)and(P6)

reciprocal(ornon-reciprocal).Thesepostulatesarewidely

acceptedinthenetworktheoryliterature(Ramoetal.,1965;

VanValkenburg,1960,1964).

Thesesixpostulatesdescribethepropertiesofasystem

havinganinputandanoutput.Forthecaseofanelectromag-

netictransducer(loudspeaker)thesystemisdescribedbya

two-portnetworkasshowninFig.2.P6isinherentlyatwo-

portnetworkproperty,whileP1–P5applytoone-portnet-

worksaswell(e.g.,adrivingpointimpedanceisaone-port).

Forexampletheelectricalimpedanceofaloudspeakeris

definedby

ZesðÞ¼
UðxÞ
IðxÞ

���
�U¼0

:

Notethatthedrivingpointimpedanceisacausalfunction,

thusithasaLaplacetransformandisafunctionofthecom-

plexfrequencys¼rþjx,whereastheFouriertransforms

ofthevoltageUðxÞandcurrentIðxÞarefunctionsofthe

realradianfrequencyx.

1.Transmissionmatrix

Thetwo-porttransmissionmatrixforanacoustictrans-

ducer(loudspeaker)isdefinedas

Ui

Ii

"#
¼

AsðÞBsðÞ
CsðÞDsðÞ

"#Fl

�Ul

"#

¼
1

T

ZesðÞZesðÞzmsðÞþT
2

1zmsðÞ

"#Fl

�Ul

"#
:(1)

Intheaboveexampletheinputiselectrical(voltageandcur-

rent)½Ui;Ii�andtheoutput(load)arethemechanical(force

andvelocity)½Fl;Ul�.Thefirstmatrixisthegeneralcase,

expressedintermsoffourunspecifiedfunctionsAðsÞ;BðsÞ;
CðsÞ;DðsÞ,whilethesecondmatrixisforthespecificexample

FIG.2.Aschematicrepresentationofatwo-portABCDelectro-mechanicsystemusingHuntparametersZeðsÞ;zmðsÞ,andT(s):electricalimpedance,mechan-

icalimpedances,andtransductioncoefficient(Hunt,1954;KimandAllen,2013).AlsoUðfÞ,I(f),F(f),andU(f)arethefrequencydomainvoltage,current,

force,andvolumevelocity,respectively.NoticehowtheABCDmatrixmethod“factors”thetwo-portmodelinto2�2matrices.Thisallowsonetoseparate

themodelingfromthealgebra.Theflowisalwaysdefinedintotheport.Thusitisnecessarytoforceanegativesignonthevolumevelocity.
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Formally,QSisdefinedaska<1,wherek¼2p=k¼x=c
andaisthecellulardimensionorthesizeoftheobject

(kandacanbevectors).Schelkunoff(1943)mayhavebeen

thefirsttoformalizethisconcept(butnotthefirsttouseit,

asexemplifiedbytheHelmholtzresonator).GeorgeAshley

Campbellwasthefirsttousetheconceptintheimportant

applicationofawave-filter,40yearsbeforeSchelkunoff

(Campbell,1903).Thesetwomenbothworkedforthe

telephonecompany(after1929,calledAT&TBellLabs)

(Fagen,1975).

TherearealternativedefinitionsoftheQSapproxima-

tion,andforthecaseofMMsthesemaynotbeequivalent,

dependingonthecellstructure.Thealternativesareoutlined

inTableI.

III.CONCLUSIONS

WeproposethegeneraldefinitionofaMMasalattice

oftransducers,eachofwhichfollowpostulatesP1–P9,that

includealltransductionmodalitiesofinterest.Atransducer

convertsbetweenmodalities.Thereareatleastthreediffer-

entcoupledmodalitieswhendealingwithMMs,including

electrical,mechanical,andacoustical(theremaybeothers).

Furthermoreitisnecessarytogeneralizetheconceptofthe

QSapproximation(P9)toallowforguidedwaves.

GiventhecombinationoftheimportantQSapproxima-

tion,alongwiththesespace–time,linearity,andreciprocity

properties,arigorousdefinitionandcharacterizationofMMs

canthusbeestablished(oratleastoutlined).Itisbasedona

taxonomyofsuchmaterials,formulatedintermsofmaterial

andphysicalpropertiesandintermsofextendednetwork

postulates.

Carlin’ssixnetworkpostulateshavebeenextendedto

guideabetterunderstandingofMMsbyprovidingataxon-

omy.OnecanclassifyMMsintermsoftheseninepostu-

lates.AsingletransducerisnotaMM;however,alatticeof

transducersformsaMM;whichhas,forexample,non-

linear,non-reciprocal,andactivepropertiesundertheQS(or

band-limited)approximation.ForexamplePopaand

Cummerdesignedanon-reciprocalactiveAMMcellunit,

wheretheycombinedmanynon-MMunits,suchasapiezo-

electrictransducer,electricalcomponents,andacoustic

Helmholtzcavities.

Themostimportantaspectofthiscurrentworkisthatit

providesafoundationforcharacterizingMMsbyusing

wave-basednetworkpostulates.Thisstudyrefinesthetaxon-

omyofMMsbasedonatheoreticalfoundation.Toour

knowledge,thisisthefirstattempttorigorouslyclassify

MMs.
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of Fig. 2. The four entries are the electrical driving point im-

pedance ZeðsÞ, the mechanical impedance zmðsÞ, and the

transduction T ¼ B0l, where B0 is the zero frequency (aka

DC) magnetic flux strength and l is the length of the wire

crossing the flux. Since the transmission matrix is anti-

reciprocal, its determinate DT ¼ �1, as is easily verified.

Other common transduction examples of cross-modality

transduction include current–thermal (thermoelectric effect)

and force–voltage (piezoelectric effect). These systems are

all reciprocal, thus the transduction has the same sign.

2. Impedance matrix

The corresponding two-port impedance matrix is

Ui

Fl

� �
¼ z11ðsÞ z12ðsÞ

z21ðsÞ z22ðsÞ

� �
Ii

Ul

� �

¼ ZeðsÞ �TðsÞ
TðsÞ zmðsÞ

� �
Ii

Ul

� �
: (2)

The impedance matrix is an alternative description of the

system but with generalized forces ½Ui;Fl� on the left and

generalized flows ½Ii;Ul� on the right. A rearrangement of the

equations allows one to go from one set of parameters to the

other (Van Valkenburg, 1960). Since the electromagnetic

transducer is anti-reciprocal, z21 ¼ �z12 ¼ T ¼ B0l.

B. Modified, expanded, and additional postulates

Our definition of MMs must go beyond postulates

P1–P6, since MMs result from the interaction of waves in a

structured medium, along with other properties not covered

by classic network theory (e.g., the quantum Hall effect).

Assuming QS, the wavelength must be large relative to the

medium’s lattice constants. Thus the QS property must be

extended for MM to three dimensions, and possibly to the

cases of an-isotropic and random media.

1. Causality (P1)

As stated above, due to causality the negative properties

(e.g., negative refractive index) of AMMs must be limited in

bandwidth, as a result of the Cauchy–Riemann conditions.

However even causality needs to be extended to include the

delay, as quantified by the d’Alembert solution to the wave

equation, which means that the delay is proportional to the

distance. Thus we generalize P1 to include the space depend-

ent delay. When we wish to discuss this property we denote

it Einstein causality, which says that the delay must be pro-

portional to the distance x, with impulse response dðt� x=c).

2. Linearity (P2)

The wave properties of MMs may be non-linear. This is

not restrictive, as most physical systems are naturally non-

linear. For example, a capacitor is inherently non-linear: as

the charge builds up on the plates of the capacitor, a stress is

applied to the intermediate dielectric due to the electrostatic

force F¼ qE. In a similar manner, an inductor is non-linear.

Two wires carrying a current are attracted or repelled, due to

the force created by the flux. The net force is the product of

the two fluxes due to each current.

Most physical systems are naturally non-linear, it is sim-

ply a matter of degree. An important example is an amplifier

with negative feedback, with very large open-loop gain.

There are many types of non-linearity such as instantaneous

distortion, or time-based “memory” dependence (e.g., hys-

teresis). The linear property is so critical for analysis (Quan

et al., 2012), that linear approximations are often used when-

ever possible.

3. Positive-realness and conservation of energy (P4)

We greatly extend P4 (passive/active) by building in the

physics behind conservation of energy: Otto Brune’s positive
real (PR) or “physically realizable” condition for a passive

system. Following up on the earlier work of his primary

Ph.D. thesis advisor Wilhelm Cauer (1900–1945), and work-

ing with Norbert Weiner and Vannevar Bush at MIT, Otto

Brune mathematically characterized the properties of every

PR one-port driving point impedance.

Given any PR impedance ZðsÞ ¼ Rðr;xÞ þ jXðr;xÞ,
having real part Rðr;xÞ and imaginary part Xðr;xÞ, the im-

pedance is defined as being PR (Brune, 1931) if and only if

Rðr � 0;xÞ � 0: (3)

That is, the real part of any PR impedance is non-negative

everywhere in the right half s plane (r � 0). This is a very

strong condition on the complex analytic function Z(s) of a

complex variable s. This condition is equivalent to any of

the following statements: (1) there are no poles or zeros in

the right half plane [Z(s) may have poles and zeros on the

r¼ 0 axis], (2) if Z(s) is PR then its reciprocal YðsÞ ¼ 1=ZðsÞ
is PR (the poles and zeros swap), (3) if the impedance may

be written as the ratio of two polynomials (a limited case)

having degrees N and L, then jN � Lj � 1, (4) the angle of

the impedance h � /Z lies between ½�p � h � p�, and (5)

the impedance and its reciprocal are complex analytic in the

right half plane, thus they each obey the Cauchy–Riemann

conditions.

The PR condition assures that every impedance is posi-
tive-definite (PD), thus guaranteeing conservation of energy

is obeyed (Schwinger and Saxon, 1968, p.17). This means

that the total energy absorbed by any PR impedance must

remain positive for all time, namely,

EðtÞ ¼
ðt

�1
vðtÞiðtÞ dt ¼

ðt

�1
iðtÞ ? zðtÞ iðtÞ dt > 0;

where i(t) is any current, vðtÞ ¼ zðtÞ ? iðtÞ is the correspond-

ing voltage and z(t) is the real causal impulse response of

the impedance [related by the Laplace transform zðtÞ
$ ZðsÞ]. In summary, if Z(s) is PR, EðtÞ is PD.

As discussed in detail by Van Valkenburg, any rational

PR impedance can be represented as a rational polynomial
fraction expansion (residue expansion), which can be expanded

into first-order poles as
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Z sð Þ ¼ K

YL

i¼1

s� nið Þ

YN
k¼1

s� dkð Þ
¼
X

n

qn

s� sn
ej hn�hdð Þ; (4)

where qn is a complex scale factor (residue). Every pole in a

PR function has only simple poles and zeros, requiring that

jL� Nj � 1 (Van Valkenburg, 1964).

Whereas the PD property clearly follows P3 (conserva-

tion of energy), the physics is not so clear. Specifically what

is the physical meaning of the specific constraints on Z(s)?

In many ways, the impedance concept is highly artificial.

When the impedance is not rational, special care must

be taken. An example of this is the semi-inductor M
ffiffi
s
p

and

semi-capacitor K=
ffiffi
s
p

due, for example, to the skin effect in

EM theory and viscous and thermal losses in acoustics, both

of which are frequency dependent boundary-layer diffusion

losses. They remain positive-real but have a branch cut, thus

are double valued in frequency.

4. Rayleigh Reciprocity (P6)

Reciprocity is defined in terms of the unloaded output

voltage that results from an input current. Specifically

z11 sð Þ z12 sð Þ
z21 sð Þ z22 sð Þ

" #
¼ 1

C sð Þ
A sð Þ DT

1 D sð Þ

" #
; (5)

where DT ¼ AðsÞDðsÞ � BðsÞCðsÞ ¼ 61 for the reciprocal

and anti-reciprocal systems, respectively. This is best under-

stood in terms of Eq. (2). The off-diagonal coefficients z12ðsÞ
and z21ðsÞ are defined as

z12 sð Þ ¼ Ui

Ul

����
Ii¼0

z21 sð Þ ¼ Fl

Ii

����
Ul¼0

:

If these off-diagonal elements are equal [z12ðsÞ ¼ z21ðsÞ]
the system is said to obey Rayleigh reciprocity. If they are

opposite in sign [z12ðsÞ ¼ �z21ðsÞ], the system is said to be

anti-reciprocal. If a network has neither reciprocal nor anti-

reciprocal characteristics, then we denote it as non-reciprocal
(McMillan, 1946). The most comprehensive discussion of rec-

iprocity, even to this day, is that of (Rayleigh, 1896, Vol. I,

pp. 150–160). The reciprocal case may be modeled as an ideal

transformer (Van Valkenburg, 1964) while for the anti-

reciprocal case the generalized force and flow are swapped

across the two-port. An electromagnetic transducer (e.g., a

moving coil loudspeaker or electrical motor) is anti-reciprocal

(Beranek and Mellow, 2014; Kim and Allen, 2013), requiring

a gyrator rather than a transformer, as shown in Fig. 2.

Non-reciprocity (or a lack of reciprocity) is another

major characteristic of AMMs (Maznev et al., 2013; Popa

and Cummer, 2014; Sounas et al., 2013; Fleury, 2015). As

discussed by Popa and Cummer (2014), the on-going debate

on naming a unidirectional acoustic device indicates the

need for better taxonomy in the field of AMMs.

Unidirectional acoustic devices have many names, such as

acoustic diodes, rectifiers, isolators, and non-reciprocal

media. All these terms describe an AMM that breaks the

directional symmetry property of transmission, like an

operational amplifier does.

5. Reversibility (new P7)

A reversible system is invariant to the input and output

impedances being swapped. This property is defined by the

input and output impedances being equal.

Referring to Eq. (5), when the system is reversible
z11ðsÞ ¼ z22ðsÞ and, in terms of the transmission matrix vari-

ables, ½AðsÞ=CðsÞ� ¼ ½DðsÞ=CðsÞ� or simply AðsÞ ¼ DðsÞ if

C(s) is not zero.

An example of a non-reversible system is a transformer

where the turns ratio is not one. An ideal operational ampli-

fier (when the power is turned on) is also non-reversible due

to the large impedance difference between the input and out-

put. Furthermore it is active (it has a power gain, due to the

current gain at constant voltage) (Van Valkenburg, 1960).

Generalizations of this lead to group theory, and

Noether’s theorem. These generalizations apply to systems

with many modes whereas MMs operate below a cutoff fre-

quency (Chesnais et al., 2012), meaning that like the case of

the TL, there are no propagating transverse modes. While

this assumption is never exact, it leads to highly accurate

results because the non-propagating evanescent transverse

modes are attenuated over a short distance, and thus, in prac-

tice, may be ignored (Montgomery et al., 1948; Orfanidis,

2008; Schwinger and Saxon, 1968, Chaps. 9–11).

We extend the Carlin and Giordano postulates to include

reversibility (P7), which was refined by Van Valkenburg

(1964). To satisfy the reversibility condition, the diagonal

components in a system’s impedance matrix must be equal.

In other words, the input force and the flow are proportional

to the output force and flow, respectively (i.e., Ze¼ zm).

6. Spatial dependencies of MM (new P8)

The characteristic impedance and wave speed of MMs

may be strongly frequency and/or spatially dependent, or

even be negative over some limited frequency ranges. Due to

causality, the concept of a negative group velocity must be re-

stricted to a limited bandwidth (Brillouin, 1960, Chap. II,

p. 19–23). As is made clear by Einstein’s theory of relativity,

all materials must be strictly causal (P1), a view that must

therefore apply to acoustics, but at a very different time scale.

7. The QS constraint (new P9)

An important property of MM is the use of the QS

approximation, especially when the waves are guided or

band limited. This property is not mentioned in the six postu-

lates of Carlin and Giordano (1964). Only when the dimen-

sions of a cellular structure in the material are much less

than the wavelength, can the QS approximation be valid.

This effect can be viewed as a mode filter that suppresses

unwanted (or conversely enhances the desired) modes. But a

single number used to quantify the structure is not adequate

for MMs, as it can be a three dimensional specification, as in

a semiconductor lattice, or even a random variable matrix.
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